Bibliography

[1]

Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial vehicle datasets. The International Journal of Robotics Research, 35(10):1157–1163, 2016.

[2]

Pavel Davidson, Jani Hautamäki, Jussi Collin, and Jarmo Takala. Improved vehicle positioning in urban environment through integration of gps and low-cost inertial sensors. In Proceedings of the European Navigation Conference (ENC), Naples, Italy, pages 3–6, 2009.

[3]

Jeffrey Delmerico and Davide Scaramuzza. A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 2502–2509. IEEE, 2018.

[4]

Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. Closed-form preintegration methods for graph-based visual-inertial navigation. International Journal of Robotics Research, 38(5), 2019.

[5]

Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal and spatial calibration for multi-sensor systems. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1280–1286. IEEE, 2013.

[6]

Guoquan P Huang, Anastasios I Mourikis, and Stergios I Roumeliotis. Observability-based rules for designing consistent ekf slam estimators. The International Journal of Robotics Research, 29(5):502–528, 2010.

[7]

Jinyong Jeong, Younggun Cho, Young-Sik Shin, Hyunchul Roh, and Ayoung Kim. Complex urban dataset with multi-level sensors from highly diverse urban environments. The International Journal of Robotics Research, 38(6):642–657, 2019.

[8]

Steven M Kay. Fundamentals of statistical signal processing. Prentice Hall PTR, 1993.

[9]

Mingyang Li and Anastasios I Mourikis. High-precision, consistent ekf-based visual-inertial odometry. The International Journal of Robotics Research, 32(6):690–711, 2013.

[10]

Mingyang Li. Visual-inertial odometry on resource-constrained systems. PhD thesis, UC Riverside, 2014.

[11]

Peter S Maybeck. Stochastic models, estimation, and control, volume 3. Academic press, 1982.

[12]

Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint kalman filter for vision-aided inertial navigation. In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 3565–3572. IEEE, 2007.

[13]

E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza. Continuous-time visual-inertial odometry for event cameras. IEEE Transactions on Robotics, pages 1–16, 2018.

[14]

Alonso Patron-Perez, Steven Lovegrove, and Gabe Sibley. A spline-based trajectory representation for sensor fusion and rolling shutter cameras. International Journal of Computer Vision, 113(3):208–219, 2015.

[15]

Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020, 2018.

[16]

Arvind Ramanandan, Anning Chen, and Jay A Farrell. Inertial navigation aiding by stationary updates. IEEE Transactions on Intelligent Transportation Systems, 13(1):235–248, 2011.

[17]

David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav Usenko, J  ö  rg St  ü  ckler, and Daniel Cremers. The tum vi benchmark for evaluating visual-inertial odometry. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1680–1687. IEEE, 2018.

[18]

Nikolas Trawny and Stergios I Roumeliotis. Indirect kalman filter for 3d attitude estimation. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2:2005, 2005.

[19]

Brandon Wagstaff, Valentin Peretroukhin, and Jonathan Kelly. Improving foot-mounted inertial navigation through real-time motion classification. In 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–8. IEEE, 2017.

[20]

Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 7244–7251. IEEE, 2018.